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ABSTRACT

te.
In this paper vw discuss the Dirichlet problem

delt'- o0ne4_ jte&.jr fk-A 3LC Lm.'I 0

(1) Au- f(u) in V1, u Y 0 in ~,u - 0 on

under the hypotheses of sublinearity at 0 and superlinearity at + '. The

dominating theme throughout the paper is that of a supersolution of (1). 4fe /

prove theorems on the existence of two solutions whenever problem (1)

possesses a supersolution, using topological degree arguments or variational

methods according to the type of growth of f at + . ai:eelt.va. the

questions of existence of supersolutions and their actual construction.

Schwarz symmetrization techniques are used to obtain supersolutions from

solutions of associated symmetrized problems.
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SIGNIFICANCE AND EXPLANATION

Boundary value problems of the type

(1) -Au - f(u) in 0, u > 0 in 0, u - 0 on 83 ,

arise in a variety of situations, like nonlinear diffusion generated by non-

Ilinear sources, thermal ignition of gases, quantum field theory, gravitational

4 equilibrium of stars, etc. In many applications the nonlinearity f is sub-

linear at 0 and superlinear at -. This class of problems is discussed

here, and existence of two solutions of (1) is proved. The interaction of
1

f with the first eigenvalue of (-A,H 0) plays an important role in the

analysis. The Schwarz symmetrization is used to establish existence of super-

solutions of (1). The supersolutions are shown to yield the existence of at

least two solutions via topological degree arguments and variational methods.
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ON PAIRS OF POSITIVE SOLUTIONS FOR A CLASS OF
SZMILINEAR ELLIPTIC PROBLEMS

Djairo G. de Figueiredo* and Pierre-Louis Lions

INTRODUCTION. The question of existence of positive solutions for semilinear

elliptic problems of the type

(1) -Au - f(u) in 2, u - 0 on Q,

depends very strongly on the behavior of the function f a R 4 R at 0 and

at + -. Here Q denotes a smooth bounded domain in RN , N : 2, and f is

always assumed to be locally Lipschitzian. We distinguish two special classes

of such problems, which have been extensively studied in recent years: the

sublinear problems and the superlinear ones. See, for instance, the review

papers (1], (2], [3]. The sublinear problems are characterized by the

inequalities
f(s) f(s)

* (2) lim inf -- > AI and lim sup = < A .
s+O+ s ft

Here -" 1 (2) denotes the first eigenvalue of -A in H (2). The super-

linear problems are characterized by the inequalities

(3) lim sup ---L <A- and lim inf L (s ) > X1
8+0+ a +=

In the present paper we propose to discuss problems which are sublinear

at 0 and superlinear at + -. Namely,
f(s) fs

(4) lim infi > X I and lim inf( > X1
s O+ s+4-1

We allow these limits to be + -. For instance, this is the case for the
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first limit in (4) if f(0) > 0. And the second limit in (4) is + e if f

grows more rapidly than linearly. We remark that these types of problems have

been studied in the case of f(0) > 0 and f convex by several authors, for

instance, Gelfand (4], Joseph-Lundgren [5], Crandall-Rabinowitz (61, Bandle

(7], Mignot-Puel [8]. Also some problems of this type are discussed in Lions

[2]. In this paper we treat a much larger class of nonlinearities. The

dominating theme throughout the paper is that of a supersolution of (1). The

main highlights being: (i) the question of existence of supersolutions, (ii)

their actual construction, (iii) how they can be obtained from solutions of

the symmetrized problem by the use of Schwarz symmetrization techniques,, (iv)

existence theorems for problem (1) that possesses a supersolution.

In Section 1 we present results on the existence of two positive

solutions for problem (I), one of the basic assumptions being the existence of

a strict supersolution. Here topological degree techniques and variational

methods are used to treat different classes of nonlinearities. Condition (4)

puts no restriction on the growth of f at + -. To obtain the first

solution of (1) this is no serious problem. Indeed, if we know that a

supersolution w of (1) exists, it follows from (4) that a subsolution u

can be found, with u • w. And then the monotone iteration method applies to

yield a solution of (1), which is in fact the minimal solution. However, if

we are interested in deciding whether or not there are more solutions we need

some sort of compactness in our problem. More precisely, if we plan on

treating the problem by topological degree arguments, a priori bounds on the

solutions are in order. If we are to use variational methods, then a Palais-

smale condition is required on the Euler-Lagrange functional associated with

(1). In both cases these properties will be consequences of the conditions

assumed on f as far as its growth at + - is concerned. We discuss these

points in Section 1. More general results are obtained in Section 4.
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The existence of a supersolution of (1) is connected with how far below

the line ),Is the graph of f(s) goes. We propose to discuss this matter

with wse detail in Section 2, showing how to actually construct a super-

solution in some examples. In Section 3 we use the idea of Schwarz syimetri-

zation to obtain statements about the existence of a supersolution of (1) from

the knowledge of a solution of (1) in the case of a ball.

In Section 4 we invoke some results of (9] and prove a fairly general

theorem on the existence of pairs of positive solutions. In this way we are

able to treat a class of nonlinearities f more general than those of Section

1. Under these less restrictive assumptions on f it is not clear that one

has a priori bounds on the solutions of (M). Also the corresponding Euler-

Lagrange functional apparently does not satisfy the Palais-Smale condition.

However we are able to proceed via an appropriate truncation of the

nonlinearity f.

-3-
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1. EXISTENCE THEOREMS. In this section we establish results on the existence

of positive solutions for the Dirichlet problem

(1) -Au - f(u) in n, u - 0 on 8A,

where 11 is a smooth bounded domain in RN, N A 2, and the nonlinearity f

satisfies different sets of conditions, as specified in the sequel. The

following conditions will be always assumed:
+

(fl) f : R + R is locally Lipschitzian,

(f2) lim inf f(s) > A
s*O+ 1

(f3) lim inf f(s) > I

(f4) Jim f(s) 0, with 1 <a e- (N+2)/(N-2), if N ; 3
644.6a ~a

or 1'< a < -, if N - 2

We remark however that condition (f4) is not needed when we want just to state

the existence of one solution. Its importance appears when we have to prove

the existence of two solutions, since in this case a priori bounds on the

solutions or a Palais Smale condition is needed. Besides the above stated

conditions on f, the following ones will be useful in treating the problem

by topological degree arguments. The conditions next have to be assumed only

in the case N ) 3:
sf~s)-8F( s) s

(f5) lim sup 2 2/N 4 0, with 8 e [0,2N/(N-2)), F(s) - f f
s+ a 2 f(s) 2/N

(f6) n is convex or f(s)s -p  is nonincreasing for s > 0, with p - (N+2)/(N-2).

Assumptions (f4), (f5) and (f6) are used in Theorem I below only to

assert that there exist a priori bounds on the positive solutions of (1), or

more generally, a priori bounds on positive solutions of a certain para-

metrized family of Dirichlet problems. And for that matter we rely on the

-4-



results of de Figueiredo-Lions-Nussbaum [9]. So Theorem 1 is true if (f4),

(fS) and (f6) are replaced by another set of conditions that insures the

existence of such bounds. We remark however that these assumptions are not

too restrictive. For instance, (fM) is satisfied if a in (f4) is

( N/(N-2) or if f(s) - cs p , with c > 0 and 1 < p < (N+2)/(N-2). It has

been established in (9] that more general conditions on 0 and f also yield

to a priori bounds on the positive solutions of (1). Therefore we see that

large classes of nonlinearities may be allowed. For the question of a priori

bounds on positive solutions of (1) we refer also to the work of Brfzis-

Turner [10] and Gidas-Spruck [11].

A function w e c2 ,a(f) is said to be a supersolution of (1) if

-Aw > f(w) in A and w ) 0 on 90. A supersolution which is not a

solution is said to be strict. Now we state our first existence result.

Theorem 1. In addition to (fl) - (f6), assume that (1) possesses a strict

supersolution w. Then (1) has two solutions 0 < ul < u2, and uI is the

minimal solution.

Remarks. 1) Conditions (fl) - (f6) are not sufficient to insure the

existence of a positive solution of (1). Indeed, take any f such that

f(s) 0 an, for s > 0 and a > Clearly 0 is the only possible

solution of (1). Hence we see that the graph of f(s) has to cross the

straight line Xls. And the question is to determine "how much" it has to be

below A Is, so that a positive solution of (1) exists. It is well known that

if f(s) - 0 for some s > 0 then a positive solution of (1) exists under

hypotheses (fl) and (f2). We shall see that the graph of f does not have to

go below that far. So the interesting case is f(s) > 0, for all s > 0.

2) The limits in (f2) and (f3) can be + -. This will be the case, for

instance, if f(0) > 0 and f(s) behaves like csp for large s, with

c 0 and p > 1.-5-



3) The requirement that the supersolution be strict is essential, as we show

next. Let g : R + R" be a continuous strictly convex function, with

g(O) > 0, and consider the eigenvalue problem:

(2)) -Au - Xg(u) in 0, u - 0 on 9 •

It is known (see for instance, Crandall-Rabinowitz [6]) that there exists

0 <A < such that (2) has a minimal solution uA for 0 < X < X , and
X

no solution for A > X * We recall that this branch of minimal solutions is

obtained by a continuation argument using the implicit function theorem.

Moreover if g is such that one can prove an a priori bound on this branch of

minimal solutions for 0 4 A C A , then such a branch actually reaches
*.

X - A That is, (2)). has also a minimal solution u , for X A . One

can in fact prove that such a u , is the unique solution of (2) , Now we

claim that u , is the only supersolution of (2) ,. Indeed, suppose that

v is a strict supersolution of (2) ,. Then v 0 u , and we have
AA

-A(v-u ) A(g(v) - g(u ) Ag(u ,)(v-u *)

A A A A

where one of the inequalities above is strict in a set of positive measure, as

a consequence of v % u , and the strict convexity of g. Consequently, the

first eigenvalue of the eigenvalue problem

[-A - X g'(u .)]u - ou in 0, u - 0 on 30

A

is positive. However, this implies, via the continuation argument, that there

exists A > A such that (2) X has a solution. This contradicts the

maximality of A

Proof of Theorem 1. Let us denote by X the Sanach space of Cl-functions in

which are 0 on 36, endowed with the usual C1-norm. Define f for

negative a as f(s) - f(O). The solutions of (1) with this extended f are

the same as the solutions of the original problem (1). For in either case the-6-



solutions are all positive. Let us define the one-parameter family of

functions
(3) f (B) - Vf(s) + (1-i)(WAs + 1), 0 4 U C 1

where X is some fixed number > A and s +  denotes the function which is1

s for a ) 0 and 0 for a < 0. In view of assumptions (fl), (f3), (f4),

(fS), (f6), there is a constant c I > 0 such that

(4) lul X c 1

for all eventual solutions of the problems

(5)p -Au - f (u) in n, u - 0 on an, 0 4 ja 1 .

U
Now let k > 0 be such that f(s) + ka is increasing for s e [0,iwi o.

-, L
Let K - (-A+k) 1(f (*)+ko). More precisely, let us define K : X + X as

follows K v - u where u is the solution of the Dirichlet problem

(6) -Au + ku - f (v) + kv in n, u - 0 on 3(9

The mapping K so defined is compact. From the Schauder estimates it

follows that there is a constant c2 > 0 such that

(7) IK v c 2 , V v e X, 0 v w

As a consequence of (f2) we see that there is C > 0 such that £* is a

subsolution for all problems (5) Here * denotes a positive eigen-

function corresponding to A1 (1). Also we may take <I < w in 0. it

follows from the maximum principle that any solution u of (5) such that
u)C* in A is indeed u > eI in 0 and 2 < E ! on a. Now

consider the bounded open set ar
0 - {u e x ul < c + C + 1, u > C# in n, au < I on all

X 1 2 1 WV v
where c, and c2 are the constants defined in (4) and (7), respectively,

and C# is the subsolution said above. By the foregoing remarks it follows

that 0 0 (I-K)(ae). So the degree d(I-K ,,0) is independent of

e (0,11. Clearly the degree d(I-K01 8,0) - 0 since ( 0 has no solution.

-7- j



Hence

d(I-K1,8,O) 0

Now let us consider the following open subset of 9:

' {u e B u < w in n;2>W on
av 3V

and we claim that d(I-KI,9',0) - 1. Once this is proved, it follows that

d(I-K ,\1',0) - -1. So (5)1, which is the same as (1), has two solutions

u I e' and u2 e 9\0', which are not necessarily ordered. So we have to

proceed further in order to complete the proof of the theorem. Let v -

min(w,u2 ). It follows that v is in W 1 (n), e* 4 v and

-Av > f(v), in V'f)(

So the iteration monotone method yields the existence of a solution u :f

(1), with 0 < u, < u2 and uI is the minimal solution of (1). To f.-14

the proof we have to prove the above claim. To do that observe that KI maps

8' into 0'. Let u0 P 8' and consider the constant mapping C e' + o'

defined by C(u) - uO. By the convexity of 8', it follows that I - KI is

homotopic to I - C in e' and d(I-K 1 ,8',0) = d(I-C,e',0). But this last

degree is trivially equal to 1. The proof is complete. o

Our next result provides existence of two positive solutions for (1)

under a different set of assumptions on the nonlinearity f. We shall drop

conditions (f5) and (f6), and replace them by (f7) below. Hence a priori

bounds on the solutions are not available any longer. Condition (f7) is

needed only when N > 3 and the C in (f4) is > (N+I)/(N-1).

(f7) lim inf sf(s)-OF(s) o 0, with e > 2 and F(e) - f .
s+ *2 f(s)2/(N+1)

Theorem 2. In addition to (fl) - (f4) and (f7), assume that problem (1)

possesses a strict supersolution w. Then (1) has two positive solutions.

-8-



Remark. Assumptions (f4) and (f7) are used to assure that the Euler-Lagrange

functional associated with (1) satisfies the Palais-Smale condition. At this

point we rely on the work in (12]. We remark that (f7) is satisfied for

instance if one assumes the condition introduced by Ambrosetti and Rabinowitz

in (13]. Namely, that there are numbers 6 > 2 and so > 0 such that

eP(s) 4 sf(s) for s > s0 . So functions f behaving at + 0 like csP ,

with c > 0 and 1 < p < (N+2)/(N-2) do satisfy (f7). Hence we see that

there are classes of functions which satisfy both (fS) and (f7). However it

is apparent that there are functions satisfying one of these conditions but

not the other.

Proof. Define f for negative s as f(s) = f(0). Let us consider the
1

functional f : H + R defined by
0
(u) 2 f 2vul F(u), F(s) f

In view of hypotheses (fl), (f3), (f4) and (f7), this functional is of class

C and satisfies the Palais-Smale condition. The critical points of 4 are
1

precisely the H -solutions of (1). In view of (f4) these solutions in fact
0

belong to C2a (T). This follows readily by a bootstrap argument in the case

when a in (f4) is < (N+2)/(N-2). The case when a = (N+2)/(N-2) is

treated by more sophisticated arguments due to Brfzis-Kato [14], see also

(121. Now we use the fact that (1) possesses an ordered pair of a sub- and a

supersolution: C* < w for C > 0 sufficiently small. Then it is known

(see (15]) that there is a point u1  in the interval [£1,w], which is a

local minimum of 4. Now, either i) uI is a strict local minimum of t, or

(ii) it is not. Hence at this point the proof bifurcates to cover separately

these two possibilities. Let us first assume i). Define the function

g : 0 x R + R by g(x,s) of(s + u1 (x)) - f(u1(x)). The functional

Y H + R definedby
0

-9-
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Y(v) f . f Ivv12 - J (xv)
where G(x,s) - F(s + + u1 (x)) - f(ul(x)s + - F(u(x)), satisfies the Palais-

1

aSmale condition. Its critical points are the H -solutions of
0

-Av- f(v + u flu

and it follows that they are ; 0 a.e. (fl). So a non-zero critical point v

of I provides a second nontrivial solution of problem (1): u2 - v + u I. To

show tha, T has a non-zero critical point it is enough to prove that 0 is

a strict local minimum of T. (The Mountain Pass Theorem then completes the

proof). For that matter we observe that there is e > 0 such that

(*) T(v) > 0 for all 0 < Ilv C .

This is a simple consequence of the identity:

2 = _Ivv uv-12 - ,u +O

and the fact that u, is a strict local minimum of 0. Next we claim that

there is a > 0 such that T(v) ) a for lvI -WC. In fact, suppose that

this is not the case. Then there exists vn , with 1v I e, and

T(v ) + 0. Since v - v we get Y(v) 4 0. In view of (*) above we see
n n

that v - 0. So passing to a subsequence we see that J G(x,v n ) 0, which

1 2
implies that Tv n ) ;b i C for n sufficiently large. But this contradicts

the fact that T(v ) + 0.
n

Now we proceed to consider alternative (ii). That is, suppose that given

0 > 0 such that f(u) > 0(u1 ) for Iu-ul 1  C.0 there is an 0 < C < €0

such that

inf{0(u) : lu-u I - } - O(u)

Let (w) be such that Iw-ul , #(W + ( 0(ul) and Wn w. It

follows from (f4) that 0 is weakly lower semicontinuous. so #(w ) O 0(W),
n

which gives O(W) O (u1) showing that w is a minimum of 0 in the ball

-10-



lu-ull H1 4 CV We see readily that W u 1. Otherwise, supposing a u 1,

we come to a contradiction passing to tt: limit in the identity below:
2 1 1

2  f
- -u I H(W-Ul)1 + f VW " Vu f V "

(Recall that the first term in the right side of the previous equality is

C 2/2.) Consequently 0) is another critical point of *, since

0 < W-u 1  1 < Co . 0

Remark. If f(0) > 0 the above proof can be considerably shortened. Indeed,

at the point where it bifurcates we have only to apply the strong form of the

Mountain Pass Theorem, as proved by Rabinowitz [161, see also a simple proof

in (15]. The critical point so obtained is clearly nontrivial. We also

remark that the above proof in the case of alternative (ii) can also be done

using Ekeland variational principle as in [153.

I

- 1-

-11-,



2. The case when 0 is a ball. Suppose that 0 is the open ball

N
B - {x e R : lx1 < p). In this section we show how to construct super-suer

solutions of problem (1), and discuss some examples. Let us begin by

considering the following linear Dirichlet problem:

(8) -Av - Uv + I in B , v - 0 on aBI

where 0 4 u < )I(BI ). Let us denote by vU  the solution of (8). We know

that v is positive, radially symmetric and its maximum M is assumed at

the center of the ball. That is

M - v (0) - max{v W(x : x e B •

These functions v and their corresponding maxima, M , play an important

role in the questions of existence of solutions for semilinear problems like

(1). Problem (8) can be solved explicitely. Since v(x) is a function only

of the radius r - lxi, (denote it again by v(r)), it has to be the

solution of the following two-point boundary value problem

(9) -v" - -- v' - vv + I in (0,1), v'(0) - v(1) = 0
r

In the case N - 2 this equation becomes

v" - V + UV - -1r

which is the Bessel's equation of zero order. So the solution of (9) is

( (/I r)
vU(r) [ -J (/Ji)

where JO denotes the Bessel function of zero order. Recalling that

J(0) - 1, we obtain a simple expression M in this case. Namely

MU

U U 0

In the case N ) 3, we make the substitution w(r) - v(r)rp, where p =

(N-2)/2. o W is a solution of

1 
2+'w + (U.2) r, () W1

r

-12-



which is given readily in terms of Bessel's functions of order p. Thus the

solution of (9) is

1J (/p r)
(r) 1, p - (N2)/2

rpJ (ru )

Recalling that r-PJ p(r) + (2Pr(p+I)j-1 an r + 0, we obtain

Nil M I [ e sp/2 - in, p - (N-2)/2
Pe 2ur(p+in)j () -

which of course is valid for all N ) 2. In the case N - 3, the expressions

of v 1A and N. simplify to more elementary functions. Namely,

v (r) 1 [ifl(/I r) -i, 14 11 .!Vi--i
P Ur sinv 6 sin ri

From the former expressions we see the following properties of M. which will

be useful in the sequel. Recalling that r-2 (r-P3 (r)2Pr(p41) -j +1

[2(2p+2)1- as r * 0, we conclude that

No - (2N)- 1

It is easily seen that the first eigenvalue XI(B1) of -A# - A* in B 1,

- 0 on aBI  is the square of the first positive zero vp of Jp(r) :

(B - V2 . Consequently M 4 as V + AI(B 1 ). Since M < M , for

0 4 P < ' < I1(B we have a pretty good idea of the graph of l4.

Proposition 3. Suppose that the function f : R R+ satisfies the

following condition: there are numbers a0 > 0 and 0 4 v < XI(B I) such

that

(fS) f(s) 4 us + VO go , V 0 4 so

Then problem (1) with (a - B I has a strict supersolution.

Remark A special case of (fS) is

(fS)0  f(s) 4 2NsO , V 0 a s o  , for some so > 0.

I-13-
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Proof. The solution w of the linear Dirichlet problem

(8') -Av - uw + C in B 1, w - 0 on OR,

is such that 0 4 w < N C, for any given constant C > 0. we see that w is

a supersolution of (1) provided us + C ; f(s) for all 0 4 s 4 N C. But

-1
this follows from (fM) taking C - sa.

Remark. In the case when n - B, the analogue of condition (f8) is: there

are numbers so > 0 and 0 4 U < A I(B ) such that

f(s) < us + p N 2 a0' V 0 • 2 4 o0

UP

Remark. The idea of using linear Dirichlet problems like (8') to obtain a

supersolution of (1) has been used before by several authors. A special case

of Proposition 3 for increasing functions f was obtained by Bandle [23]

using this method.

Examples. 1) f(s) - Xe6 . Consider the nonlinear eigenvalue problem

(10) -Au - keu in 8I, u - 0 on O1

It is known that there is a 1 > 0 such that (10) has solutions for A 

and no solution if X > 3. What can be said about the value of T? In the

case when N - 2, problem (10) can be solved explicitly. This was already

proved by Liouville in 1853, see Bandle [17]. In this case it is seen that

T - 2. Proposition 3 above provides lower bounds for 7 in any dimension

N. For instance, (f8)0 in the case of N - 2, gives T), 4/e - 1.47. Using

(fS) we can improve this bound and get

tn(l+uN o(11) 3?) : 0• < a X1(91)}

which in the case of N - 2 gives T ) 1.8043. In the case of N - 3, (f8)0

gives A ) 6/e - 2,21, while estimate (11) gives A V 2.8652.

2) f(s) - X(I+as)B, a,0 > 0. We see then that the problem

-Au -A(l+u) in B 1, u - 0 on OR

has a solution for each X IC where

-14-
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1 - max.. [dt+ i.,,1/0 -. 1] 0 'C < (3 ) .

3. The case of a general domain n . In this section we use Schwarz

symmetrization for two purposes, First, we state a condition on f (depend-

ing only on the volume of 0) which insures the existence of a strict super-

solution of (1) for a general domain 0. Second, we prove that the existence

of a solution of (1) for the ball with same volume as A implies the

existence of a solution for general 0. This result is useful in constructing

strict supersolutions of (1) as we shall see.

Let us begin by reviewing the basic facts about symmetrization, which

will be used in the sequel. More about symimetrization can be seen in Hardy-

Littlewood-P61ya [181, P61ya-Szegg (191 and Bandle (17]. Let u R N + R be

an L 1-function. We define the Schwarz symetrization u (also called the

* N
symetric decreasing rearrangement) of u as the function u : R + R such

that

meas(x e R , lu(x)l > t) - measbc e R u (x) > tl, V t > 0

It follows that u is radially symmetric, positive and nonincreasing with

respect to Ixj. And one sees that

u(x) - inf[t > 0 : meas(x e R, Iu(x)l > t < .N 1X""

where t is the volume of the unit ball in RN.
N

The following properties of u will be needed here

(I) If u e LP(R ), I < p 4 -, then u e L (R ) and lul a lu I

(II) If u 6 H1 (RN), then u e Ht(RN), and IVu I2 < IVulL2

The proof of (I) is given in [18] or [191. An elementary proof of (II) can be

seen in 1201. Now let n be a smooth bounded domain in RN. Let us denote

by A* the ball centered at 0 and with the same volume as 0. Then, it

follow from (1) and (I) that

-15-



The next result is proved in Lions [211:

(IV) Consider the following two linear Dirichlet problems:

-Au - ku + 1 in 0, u 0 on 3 1

* *

-Av - Xv + 1 in n, v 0 on a'

where 0 4 A < A 1[ ). Then u 4 v a.e. (A).

(V) If u is a Lipschitz continuous function in 0, then u is

*

Lipschitz continuous in n . See (17]. The next result is due to Talenti

122]. A simple proof can be seen in [21]. We remark that in fact a more

general result is true, as proved in both [21] and [22].

(VI) Let h be a Lipschitz continuous function in n. Consider the

following two Dirichlet problems:

-Au - h in n, u - 0 on af ;

-Av - h in , v - 0 on an
* •

Then u 4 v a.e. (f).

Now we give a simple sufficient condition on f for the existence of a

strict supersolution of (1).

Proposition 4. Consider (1) for a smooth bounded domain Q in RN, and let

A be the ball in RN with the same volume as 1. Suppose that the function

f satisfies the following condition: there exist numbers a. > 0 and
*

0 o X I(A) such that

f(s) C s + P N o t V 0 C a 4 so

where P is the radius of the ball 0 . Then the problem (1) has a strict

lupersolution.

Proof. Proceed as in the proof of Proposition 3, using now (I) and (IV)

above. 0

Now let us show how a solution of (1) can be obtained from a solution of

i -16-



* * *

(12) -Av- f(v) in Q ,v>0 in Qv-0 on 311

Theorem 5. Let f : R+ + R be a nondecreasing function satisfying hypotheses

(fl) and (f2). Suppose that (12) has a solution v. Then problem (1) has a

minimal solution u and u C v, where v is the minimal solution of (12).

Proof. Let us denote by the eigenfunction corresponding to A1 (A2) '

which is >0 and -. Choose >0 and 8 > 0 such that uo -41

is a subsolution of (1), v0 - 54 is a subsolution of (12) and
1

(13)0 u 0 4 v0

Now we define iteratively the sequences (un), (vn) by

-Aun+ I - flun ) infl Un+ I - 0 on On

-AVn+ 1 - f(vn ) in () Vno - 0 on afl

In view of (VI), u1 4 W,, where w, is the solution of

-Awl flu ) in a , w - 0 on a •

So -AwI C f(v0) - -AV1, which implies by the maximum principle vI w1.

Consequently

By induction, it follows that

u• v(13n U n 4 n

But, since problem (12) has a solution, it follows that (vn ) converges to

v in the C2 ,a-norm. Now from (1) it follows that Eu I -u * c
n n7L L

Iv nI So un ) also converges to a function u which is the minimaln - n
L

solution of (1). And from (13) we obtain u 4 v.

The following results show how Theorem 5 can be used to establish the

existence of strict supersolutions of (1).

Corollary 6. Let f I R. R + be an increasing function satisfying hypo-

theses (f1) and f2), such that f 1 (s) > f(s) for a in some interval

(0,), and flI(a) A f(s) for all a e R+ . Suppose that the problem

-17-



-AV = fI(v) in fl, v - 0 on 30

has a solution. Then (1) possesses a strict supersolution w.

Proof. Indeed, w is the solution of the problem

-AV - f (w) in n, w - 0 on fl

given by Theorem S. 0

Corollary 7. Let f satisfy all the hypotheses of Theorem S. Moreover f

is C 1. Suppose that the first eigenvalue of -Aw - f'(v) , - AW in S

w - 0 on 8fl is positive. Then problem (1) has a strict supersolution.

Proof. By the implicit function theorem the problem
* *

-Az - f(a) + ez in 0 , z - 0 on a0

has a solution z. So by Theorem 5, the analogous problem in A has also a

solution, u. Clearly u is a strict supersolution of (1). 0

We have seen above that the existence of a solution in the ball n

implies the existence of a minimal positive solution in n. In fact, using

the full generality of [22] - see also [21] -, we may improve this argument as

follows. Assume that f is nondecreasing, (fl) holds and that there exists

v solution of:

(12) -Av - f(v) in fl, v > 0 in 0, v - 0 on 80

Then let aij(x) - aji(x) e L (n) satisfy: (aij (x)) > IN a.e. in A and

consider the following problem:

-- a (x) O f(u) in 0, u>0 in 0,u 0 on 30ax i ij ax

If li inf f--t) > -9 (a - HIo(n)), then the preceding problemt+O+ t I a  j ax 0

has a minimal solution u such that:

u

where v is the minimal solution of (12).

-18-



4. EXISTENCE RESULTS WITH NEITHER A PRIORI BOUNDS NOR PALAIS-SKALE. In this

section we consider once more problem (1) under the basic assumption that a

strict supersolution exists. Again conditions (fl) through (f4) are

assumed. However we shall assume neither condition (f5) nor (fM).

Consequently one does not know whether the solutions of (1) are a priori

bounded. Also the corresponding Euler-Lagrange functional does not clearly

satisfy the Palais-Smale condition. Thus the methods of Section I do not

apply directly. We found it useful to rely on the results of [9]. It is

proved there that the bound

(14) IVul - C k , for all solutions of (1) ,

L ( )

holds if in addition to (fl), (f3) and (f4) one assumes condition (f6). Also

we recall (c.f. [9]) that the condition below in conjunction with (fl), (f3)

and (f4) gives inequality (17) used in the proof of Theorem 8 presented next.

(fg) an - r u r2, where 1 and r are closed and satisfy
1 2'1 2

(i) at every point of F all sectional curvatures of r' are boundedI I

away from 0 by a positive constant;

(ii) there is a point x0  in RN such that (x-x0,n(x)) c 0 for all

x e F2, where n(x) denotes the outward unit normal to 311 at x.

Theorem S. In addition to (fl) - (f4), assume that (1) possesses a strict

supersolution w. Suppose that one of the conditions (f6) or (f9) holds.

Then (1) has two solutions 0 < u1 < u2.

Proof. i) We first observe that (f3) implies that there exist It > AI and

R > 0 such that

(15) f(s) ) Is , for all s ; R

Also it follows from (f4) that given C > 0 there is C > 0, such that
(16) f(s) < es (N +2)/ (N -2) + cc , for all 9 • 0

-19-



If (f6) is assumed we have from (9] that (14) holds, with k0 depending only

on m and R given in (15). Using Pohozaev's identity (cf. [9]) we see that

there exists a constant kI > 0 depending only on V and R, such that

(17) II 2 fn Vu, 2 - fn F(u) 4 kIc •

If we assume (f9) we also obtain (17) from the results of [9]. So in any case

we have that (17) holds true for all solutions of (M).
1

ii) By the results of Section I there is uI e H0 in the interval [0,w]

which is a local minimum of

O(v) - 2 fIVV 2  F(v)I 1
Consider the functional ID H + R defined by

(V) - _ J Ivv, 2 
-fn G(x,v)

2+

where G(x,s) - P(s+ + u1 (x)) - f(ul(x))s - Ful(x)). Let CO - lvwi + 1.
1- L

It follows from (f3) that there is a v0 e C (N), depending only on C0 , 0

and R, such that v0 > 0 in 0 and *(v0 ) < 0. Let

CW EuI + v0U 1 + I and b - max[((tv0) : 0 4 t < 11
L

Then b depends only on f on the interval [0,C 2] where C2 = max(C0 ,CI)

and on U and R.

iii) Now if v is a critical point of *, we see that v > 0 and u = v +u1

is a solution of (1). If we suppose that I(v) e [0,b], then it follows from

(17) that

lun * C3
L

where C3 depends on k,, b, C and f restricted to the interval [0,C 0].

Consequently C3 depends only on v, R, C and f restricted to the inter-

val 10,C 2]. Therefore we modify f outside of the interval [0,max(C 21C3 )J,

keeping the same u, R and C€ • Moreover this modification is done in such a

way that the new f satisfies the assumptions which enable us to use the

-20-



results of Section 1. Thus the critical point v of the modified

obtained by mountain passing satisfies #(v) a [O,b]. it is then readily seen

that U -V+U 1  is the second solution of (1) we are looking for. 0

-21-
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